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Introduction 

Traditional music theory tries to find 

universal laws of music. But when applied to 

various styles of music the limitations of 

these theories become apparent. Each 

theoretic approach is more or less adapted to 

the musical style it describes best. 

Traditional music theory can be used as a 

guide, but not as a !"#$%&'()* reference that 

dictates the kind of processes and structures 

that operate in the mind of the listener. 

 

--Computational Models of Music Perception 

and Cognition I (Purwins et al. 4)3 

 

In 1983, referring to the hierarchical segmentation algorithm proposed in Hierarchical 

Temporal Gestalt Perception in Music: A Metric Space Model (Tenney & Larry. 

Polansky) Larry Polansky writes: “…the algorithm and model even now seem to be of 

revolutionary importance in the understanding of musical form and perception, and one 

hopes that others will see fit to continue Tenney’s work.”(Larry Polansky 267)  In his 

writings on musical form—Meta†Hodos, META Meta†Hodos, Form, and Temporal 

Gestalt Perception in Music—Tenney presents a persuasive argument for the “theory of 

hierarchical perceptual gestalt formation.”   

 

This thesis is an attempt to continue Tenney’s work.  In the time since the last paper in 

the series (Temporal Gestalt Perception in Music) there have been many advances in the 

automatic processing of musical signals from cognitive models of how the human brain 

processes audio stimuli (Purwins et al. 1).  These models tend to support Tenney’s 

hypothesis that Gestalt Theory provides a useful rubric for the grouping of musical 

objects (Purwins et al. 14). 
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A Temporal Gestalt Unit (TG) is Tenney’s name for a cluster of sound objects in time.  

Temporal Gestalts are formed from clustering the base musical material, and then 

hierarchically clustering the resulting TGs together into higher-level TGs.  These 

Temporal Gestalt Units together describe the hierarchical structure of a piece. 

 

This paper is an attempt to revisit three theoretical principles that Tenney proposes in 

META Meta†Hodos for this hierarchical grouping of music into Temporal Gestalts: 

entropy, scaling, and grouping.  For each principle I will explain the fundamental 

concept, provide an algorithm that might help practically apply this concept to musical 

analysis, and provide an experimental analysis of a piece of music using that algorithm.  

This is by no means an exhaustive survey of current research, nor a full musical analysis 

using these measures.  Rather, these are the results of initial steps in building a 

framework for continuing the algorithmic application of Tenney’s theories of musical 

form and perception.  To emphasize the tentativeness of the conclusions of these results I 

title these experiments “Love Songs to James Tenney”. 

 

The musical example used for analysis is the first track off of an Audio CD “Skywriters” 

by Chris Brown and Pauline Oliveros—recording of free improvisation from September 

2008—on the request for an arbitrary example of free improvisation.  I chose this work 

for two reasons.  First, I may assume that my thesis advisor (Chris Brown) would be an 

authoritative source in determining whether my characterization of this piece of music is 

appropriate.  The second reason is for its musical properties.  As an example of free 
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improvisation it presents an example of music in which the structure of the piece of 

music is complex and non-linear.  This makes the application of algorithms—adapted 

from the domain of Nonlinear Dynamic Systems Analysis—appropriate for the task of 

segmentation.  Furthermore, the content of the piece displays a wide range of musical 

textures and levels of intensity, thereby providing a significant measure of each 

algorithm’s fitness in using the entire feature space. 

 

The first “Love Song” is on the concept of variation.  Tenney proposes the use of Entropy 

(adapted from the field of Information Theory) and Ergodicity to judge the amount of 

variation and stability of music at any given time.  To reexamine this proposal I apply the 

Multiscale Entropy measure and discuss the experimental results. 

 

The second “Love Song” concerns the concept of scale.  Tenney’s approach to grouping 

depends on the hierarchical clustering of musical material.  The concept of scale applies 

to the question of how many levels of this hierarchy to use and the ratio of time span over 

which each level is grouped; this remains an unanswered question in Tenney’s work.  

The concept of scale is also important in quantifying the distribution of parametric range 

over each level of the hierarchy; since there is a finite range of intensities possible for 

each feature vector, a large range at one level of the hierarchy limits the possible range 

for the other levels of the hierarchy for that feature vector.  For this question I will apply 

the Detrended Fluctuation Analysis algorithm and discuss its significance to a music 

analysis of the music example in question. 
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The third “Love Song” is an attempt to approach the concept of space.  In Temporal 

Gestalt Perception in Music Tenney proposes an algorithm that utilizes a 

multidimensional metric space (this space will be referred to as “feature space” for the 

purposes of this thesis) to cluster musical data and determine the clustering of musical 

material based on their distance in this musical space.  An issue to which Tenney admits 

with his algorithm is that it requires manual weighting of each dimension to their 

determination of cluster formation.  Another issue with his approach that he leaves as an 

open question is the overlapping of clusters.  In his algorithm the grouping of material is 

strictly delineated by time; transitions occur as strict divisions and do not account for 

gradual changes between clusters.  To address these issues I apply an alternative 

algorithm for clustering in space—Probabilistic Principal Component Analysis for Time-

Series Segmentation (PPCA-TSS)—which attempts to overcome both of these limitations 

in Tenney’s approach.  I then explain the significance of the results of this experiment to 

the analysis of the musical piece in question. 
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Data Preparation 

DEFINITION 9: A parameter will be defined here as 

any distinctive attribute of sound in terms of 

which one sound may be perceived as different 

from another, or a sound may be perceived to 

change in time. 

 

COMMENT 9.1: This definition refers to 

“subjective” or musical parameters (e.g., 

pitch, loudness, etc.) as distinct from 

“objective” or acoustical parameters 

(frequency, amplitude, etc.). 

 

COMMENT 9.2: There is not, in general, a 

one-to-one correspondence between musical 

and acoustical parameters.  Where there is 

such a correspondence, the relation is more 

nearly logarithmic than linear. 

 

(Tenney 103)  

 

For the three analytical methods described below I relied on the same feature set derived 

from the Audio CD recording of the piece in question.  I imported the CD data into 

jAudio (McEnnis, D. et al. 3), downsampled to a one-channel 22.5k PCM WAVE file
*
, 

and extracted the following features with a window size of 4092 and a window overlap of 

0.75:  

(descriptions quoted from jAudio documentation (McEnnis, D. et al. 3) ) 

Beat Sum  The sum of all bins in the beat histogram. This is a good 

measure of the importance of regular beats in a signal. 

                                                

*
 downsampling was necessary for memory limitations; processing the original 203MB 

file was prohibitively taxing on my computer 
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Compactness  A measure of the noisiness of a recording. Found by 

comparing the components of a window’s magnitude 

spectrum with the magnitude spectrum of its neighboring 

windows. 

Fraction Of Low Energy 

Frames 

(Amplitude “Peakiness”) 

 The fraction of the last 100 windows that has an RMS less 

than the mean RMS of the last 100 windows. This can 

indicate how much of a signal section is quiet relative to the 

rest of the signal section. 

Root Mean Square 

(Amplitude) 

 A measure of the power of a signal over a window. 

Spectral Centroid  The centre of mass of the power spectrum. 

Spectral Flux  A measure of the amount of spectral change in a signal. 

Found by calculating the change in the magnitude spectrum 

from frame to frame. 

Spectral Rolloff Point  The fraction of bins in the power spectrum at which 85% of 

the power is at lower frequencies. This is a measure the right-

skewedness of the power spectrum.  (note: comparable to the 

concept of “brightness”) 

Spectral Variability  The standard deviation of the magnitude spectrum. A 

measure of how varied the magnitude spectrum of a signal is. 

Strength Of Strongest 

Beat 

 How strong the strongest beat in the beat histogram is 

compared to other potential beats. 
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Strongest Beat  The strongest beat in a signal, in beats per minute, found by 

finding the highest bin in the beat histogram. 

Zero Crossings  The number of times the waveform changed sign in a 

window. An indication of frequency as well as noisiness.  

 

These feature vectors were then imported into Matlab for data analysis.   

 

Figure 1: plot Feature vectors over time 
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Love Song #1: Variation 

 

Entropy 

DEFINITION 28: One of the most important aspects 

of musical experience is the perception of 

variation, and a useful measure of variation is 

entropy. In information theory, the entropy of a 

“message” consisting of a series of n discrete 

“symbols” drawn from an “alphabet” of N equally 

probable symbols is 

 

  H = n log2 N (bits per message). 

 

The entropy of each symbol is 

 

  H = log2 N (bits per symbol). 

 

COMMENT 28.1: The most important variable 

here is N, the number of symbols available.  

In the special case where N = 1, H = 0. 

 

COMMENT 28.2: When the available symbols are 

not equally probable—i.e., when they do not 

occur with the same relative frequencies 

(pi)—then 

 

 H = -! pi log2 pi (bits per message). 

  

(Tenney 114)  

 

Entropy, in the context of Information Theory, is a measure of the uncertainty of a given 

variable (Moles 22-27).  The basic unit of information (again, in the context of 

Information Theory) is the bit, which is either true or false.  A coin flip, for example, 

conveys one bit of information: heads or tails.  A dice roll conveys 2.5 bits of 

information: 



 14 

Result 1 2 3 4 5 6   

Binary Value 000 001 010 011 100 101 110 111 

Table 1: Six-sided dice roll and binary bits used 

   

If each state of a system is equally likely (for example, a coin flip or a “fair” dice roll) 

then the amount of information that each result gives about the state of the system is 

equal.  The chance that I roll a 4 with a die is the same as the chance of rolling a 6.  If the 

states of a system occur with differing frequencies then the less likely states convey more 

information than more likely states.  This corresponds with our intuition.  For example, in 

a properly functioning car the check engine light only comes on when there is a problem 

with the car that needs the driver’s attention—perhaps the oil is low, there is a 

mechanical error, or the gas cap is loose.  If the light is not on then the driver can assume 

there is no problem with the car.   Most of the time this light stays off, so the driver can 

ignore the light and pay attention to their driving.  If the light turns on—which ideally is 

an uncommon state—it then suddenly conveys original and significantly different 

information about the state of the engine; something must be wrong. 

 

Compare this to a malfunctioning car, in which the engine light turns on and off for a 

myriad of reasons; when the car hits bumps, if it’s hot or cold, if there’s actually a 

problem with the car, if there’s no problem with the car, etc.  In this case whether the 

engine light is on or off conveys much less information to the driver, because there’s no 

way to tell if the engine light is on because of a real problem or because of some 

confounding factor. 
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Entropy is a method of quantifying this uncertainty.  The mathematical description of this 

measure is beyond the scope of this thesis, but can be found applied to music in the works 

of Tenney and Moles (Tenney 114; Moles 22-27). 

 

 

Ergodicity 

DEFINITION 23: A TG whose component, next-lower-

level TG’s all have the same state in a given 

parameter will be called ergodic with respect to 

that parameter. 

 

COMMENT 23.1: The shape of an ergodic TG is 

thus “flat” in that parameter. 

 

COMMENT 23.2: An ergodic TG has the same 

parametric state as each of its component, 

next-lower-level TG’s. 

 

DEFINITION 24: A TG whose component, next-lower-

level TG’s have different states in a given 

parameter will be called non-ergodic with respect 

to that parameter. 

 

COMMENT 24.1: The shape of a TG may thus be 

either ergodic or non-ergodic, with respect 

to a given parameter. 

 

      (Tenney 115) 

 

In META Meta†Hodos James Tenney describes a concept he borrowed from dynamic 

systems analysis: Ergodicity (115).  Ergodicity is a measure of whether a system is 

statistically static at a given time span.  For instance, consider the flame of an oil lamp.  

Even when the air is completely still around it, a candle’s flame will flicker, moving and 

changing shape.  Over time, however, the space which the candle occupies never changes 

outside a certain range – it won’t flip horizontally, but rather tend upwards.  Since the 
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probability of where in space the candle is at any given moment is not time dependant (at 

least until the fuel runs out) this system can be considered ergodic.  If, however, there is a 

breeze that runs through the room or someone blows on the candle that would change the 

state space in which the candle inhabits—it may flicker to the side, or momentarily shrink 

in size significantly from its normal perturbations.  In this case the probability of the state 

space changes within the time span in question (until the oil runs out), and the system is 

not ergodic.   

 

If one were to consider the time span before the breeze or breath and after it, each of 

these time segments would be ergodic.  That is to say, ergodicity is dependant on the time 

span in question.  One can therefore segment a series of data by clustering moments in 

which the probability distribution functions are statistically equivalent to each other. 

 

Figure 2: Ergodic and Non-ergodic processes 

 

In the figure above the first histogram shows a time span of a process in which the two 

time samples (blue and red) are statistically equivalent – their mean, variances, and 

skewness are functionally equivalent.  Therefore, this example is ergodic.  The second 

shows a time span of a process in which the two time samples (blue and red) are 

statistically dissimilar, so it does not satisfy the criterion for ergodicity. 
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Experiment 

 

To quantify the amount of originality at each moment of the musical piece in question I 

utilized the Multiscale Entropy measure.  The simple entropy measure of a signal 

compares the uncertainty of a sample using its immediate neighbors, which disregards 

possible larger-scale relationships.  Multiscale Entropy addresses this problem by 

chunking the signal at multiple time scales, determining the entropy at each of these time 

scales and summing the result (Costa M, Goldberger AL, & Peng CK).  I applied this 

measure to 9 of the feature vectors, excluding “Spectral Flux” and “Strength of Strongest 

Beat” because they resulted in zero entropy in my analysis across the entire time series. 

 

 

Figure 3: Multiscale Entropy of feature set.   

Color corresponds to feature, but feature names were lost in analysis. 
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As a raw measure this data proved hard to 

interpret musically.  Instead of attempting 

musical analysis with this raw data I used the 

Matlab toolbox SOMtoolbox (Vesanto) to 

create a Self Organizing Map (SOM) that 

organized the data for clustering.  A Self 

Organizing Map is a method of dimensionality 

reduction which uses artificial neural networks to iteratively map a high-dimensional 

space into a regular (in this case two-dimensional) manifold.       

 

From this SOM I hierarchically clustered the time series data into 64 separate clusters: 

 

The results of this clustering do not offer much insight into the large-scale structure of the 

piece, but they do show segments in which the information entropy of the signal is 

ergodic.  Musically this is useful in finding separation points between textures.  For 

Figure 6: Entropy clustering of time series. 

Similar colors are not related; each cluster is a separate entity 

Figure 5: Self Organizing Map of 

Information Entropy.  Feature 

names were lost in analysis 
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instance, ~10:00-~11:00 contains a single segment.  This span of music consists of 

similar textural material—occasional piano notes and background “wind” noises.  Right 

around ~11:00 there is a quick succession of clusters after a long single cluster.  This 

corresponds with a significant change in texture; the accordion comes in with dissonant 

chords that interrupt the previously static piano texture. 

 

Similarly, right at 15:09 the piano switches into a low rhythmic pulse, and the accordion 

and piano pick up these pulses, and that pulse continues to inform the onsets of events 

until around 16:30.  This corresponds to a long segment in the entropy clustering data.   

 

The time span ~1:00-~3:00, in contrast, shifts clusters relatively often.  This is due to the 

musical texture of fairly constant  texture interjected by sudden stabs of various piano 

sounds.  This causes the entropy measure to suddenly shift, because these stabs are 

unexpected.  Like the (properly functioning) car engine light these moments show sudden 

originality, and so the entropy considers these moments significant in comparison to their 

surrounding segments.  Compare this to the section mentioned earlier (~15:09-~16:30) in 

which similar sudden piano gestures occur, but in this section these events are expected 

when considering the events around them. 

 

In conclusion, I found that the results from this entropy analysis does give some lead to 

some musically interesting segmentation, but do not provide a clear method for 

determining the structural significance of these segmentation points.  This method could 

be improved by weighing the strength of the various feature vectors, but during the 
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course of analysis I lost the names associated with the information entropy of each 

feature.  Also, another method of dimensionality reduction and clustering other than 

SOMs, which do not preserve the temporal relationships between samples, may provide 

better results. 
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Love Song #2: Scaling 

 

 

 

 

 

Figure 7: Complete order, chaos, and complete disorder [from (Streich 15)]. 

 

 

Figure 8: Possible inclusions [from (Streich 16)]. 
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Scale 

PROPOSITION X: For any parameter with respect to time, 

the greater the range of variation at a given 

hierarchical level, the smaller the range of variation 

possible at the next higher level, and vice versa. 

 

COMMENT X.1: For a given parameter, and 

under the special condition that the ranges 

are identical for all TG’s at a given 

hierarchical level, the following relations 

will hold: 

 

For the first hierarchical level, considered 

by itself, the maximum range available is 

N(1)max = Nt, where Nt is the total number of 

distinguishable values in that parameter.  

When two hierarchical levels are considered, 

the maximum range at the second level is 

 

 N(2)max = Nt – (N(1)-1). 

 

For a third level, the maximum range will be  

 

 N(3)max = Nt – (N(1)-1) – (N(2)-1). 

 

More generally, the maximum range available 

at a given level (L) is 

 

 N(L)max = Nt – (N(1)-1) – (N(2)-1) -… 

 (N(L-1)-1), or N(L)max = Nt – NL + L-1. 

 

Finally, the total available range (Nt) may 

be distributed equally among some number of 

levels (L), so that 

 

 N(1) = N(2) = …N(L), and N(L+1)max = 0, 

 By setting each N at N = Nt/L+1. 

 

       (Tenney 114-115) 
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To illustrate the concept of scale, consider a sphere: 

 

 

If one was to shrink the sphere, or zoom out the frame of 

reference far enough, the sphere would be perceived as a point: 

 

 

Conversely, if one were to zoom in very close to the sphere it 

would appear as a plane: 

 

 

This demonstrates that for scale-variant objects the frame of reference strongly 

determines how its nature is perceived.  A rising tone over one second becomes 

organized perceptually as one event, but a 40 minute rising tone (Wavelength, for 

instance (Snow)) is perceived very differently.  Furthermore, the scale at which one 

abstracts and groups material strongly affects the inferences one may make about the 

material. 

 

For a more complex model, imagine an ant crawling on a cow’s back. 

The ant is able to crawl only a very small amount (in relation to human-

scale) per second.  For the sake of this thought experiment assume the ant’s 

motion can be simplified as Brownian random motion (a drunk walk).   In comparing the 

ant’s position from time X to time X+t, the maximum it may move from position X is  
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Figure 10: Cow's position over time 

[Image from (Elias)] 

Figure 9: Ant Position over time 

[Image from (Elias)] 

F(X+t) = X + t*crawlRate, where t is time and 

crawlRate is the amount of movement per second.  Of 

course, since this is random motion the position is 

more likely to fit within a Gaussian distribution 

around position X. 

 

 

Nevertheless, this defines the scale of the ant’s position probability distribution; lets say 

roughly the size of the cows back as a boundary. 

 

But what if the cow were moving 

also?  For simplicity’s sake assume the 

cow is drunk, so wanders about in similar Brownian 

fashion, but at a larger scale—in this thought 

experiment, the range of a farmer’s flatbed truck. 

 

Now the position of the ant—from the perspective of 

an observer—becomes more variable, as one must 

take into account the motion of the cow as well.  The 

position then becomes antPosition + cowPosition. If 

the farmer were also drunk and decided to go for a 

drive with this cow in the back of the truck the motion occurs on an even greater scale, 

and the position of the Ant then becomes antPosition + cowPosition + truckPosition. 

Figure 11: antPosition + cowPosition 

+ truckPosition [Image from (Elias)] 
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Figure 12: length of linear line is current time 

scale. For each line the fluctuation around line is 

calculated [From (Physionet)] 

 

This is the principle behind Perlin Noise (Elias), 

a multi-scale noise generation algorithm.  

Analysis of the power-law scaling behavior of a 

signal allows one to decompose such a signal 

to find the set of time and space scales that 

best describe the motion, and these individual components. 

Trends 

 

In analyzing a time series one often needs to account for hidden trends in the data which 

confound analysis.  In economic data, for instance, economists often account for seasonal 

changes in spending habits.  Imagine the CEO of Mattel TM trying to determine if an 

advertising campaign for Bratz TM dolls has a positive effect on sales.  A 20% increase 

of sales from May through July might be seen as more significant than a 20% increase 

from October to December, owing to the seasonal increase in consumer goods during the 

holiday season.  If, however, the advertiser detrends the data by accounting for a cyclic 

trend in spending habits over the year, and still finds a significant increase during the 

holiday season, then it is more reasonable to infer that the advertising campaign has had 

an effect. 

 

Detrended Fluctuation Analysis provides a good measure of the scaling behavior of a 

signal (Peng C-K, Hausdorff JM, & Goldberger AL. 5; Goldberger et al. 5; Peng CK et 

al. 5).  This algorithm works by detrending the time series at multiple window sizes; each 
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window size describes the time scale of interest for that run of the algorithm.  If the 

amount of variance of the signal after detrending is significantly smaller than before 

detrending then one may infer that the trend at that time scale (window size) describes 

some deterministic variation in the signal.  If, however, the difference in variance does 

not vary significantly from pre-detrending to afterwards then one can infer that the signal 

displays little deterministic activity at that time scale. 

 

DFA is closely related to the Fast Fourier Transform (FFT) of a signal.  The Short Time 

Fourier Transform (STFT) + residual (amount of error between the STFT of signal and 

the original) is actually a special case of Detrended Fluctuation Analysis in which the 

contours are sinusoidal (FFT-DFA) (Costa et al. 5). 

 

DFA is also related to multi-scale Brownian Motion described above (Scafetta & 

Grigolini 3-5).  Theoretically, if one were to perform the DFA on the signal derived from 

the example AntPosition + CowPosition + TruckPosition one would find the amount of 

difference of scale between the size of the Ant, Cow, and Truck’s positions by examining 

the fluctuation power spectrum. 

 

Once the signal is detrended and the fluctuations at each time scale are quantified the 

fluctuations are plotted against their time scales (in a log-log plot because power law 

scaling exhibits exponential decay) and the slope of the scale (!, or alpha) is calculated. 

! < 0.5 (Clip Noise) corresponds with anti-correlated data 

! = 0.5 (White Noise) corresponds with totally uncorrelated data 
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! = 1.0 (Pink Noise) corresponds with signals exhibiting 1/f power scaling behavior  

! >= 1.5 (Brown Noise) corresponds with signals exhibiting random (drunk) walk 

behavior 

 

Experiment 

 

I hypothesized that Detrended Fluctuation Analysis would provide a good measure for 

revealing the underlying structure of a piece of music, by measuring the moments of high 

and low complexity (Little MA et al. 10).  I based this hypothesis from previous tests of 

applying the DFA to musical signals (Streich 42; Jafari, Pedram, & Hedayatifar 3).  To 

test this hypothesis I applied the FastDFA (Little et al.) algorithm to each feature vector.  

Here I only include the results from the Amplitude feature, because the results from the 

other features are difficult to interpret in a musical fashion, and the Amplitude results 

alone are sufficiently musically salient.   

I found the alpha measure to be a poor measure for structural analysis, but the 

accumulated bin count of the fluctuations of each time scale to be a good predictor of 

complexity in the music.  A low flux bin count demonstrates more stable moments, and a 

high flux bin count corresponds to complex dynamic, non-ergodic behavior.  
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Figure 13: Results of Detrended Fluctuation Analysis.  The first graph is a plot of 

the Alpha value over time, the second graph is of the original Amplitude feature 

over time, and the last graph is a plot of the aggregate fluctuation bin counts. 

 

In this figure moments with a low flux bin count tend to correspond to moments of 

timbral stability in the music.  For instance, the period of ~7:10-8:00 consists of high 

frequency filtered noise and what sounds to me like Cowell-esque scrapes on piano 

strings.  The timbre and amplitude stays fairly constant through this section.  At ~8:15 a 

long accordion note occurs followed by a  sound somewhat like “moaning” , and there 

are more changes in the timbral content.  Correspondingly the flux bin count jumps up 

dramatically at that moment, and continues to be high until a brief moment around ~9:30 

where the timbre is dominated by a long accordion note, and there is little timbral change. 

 

In contrast, I would characterize spikes in the flux bin count as dramatic gestures which 

have distinct timbral characteristics from the moments around them.  Note, for example, 

the large peak ~3:56; in the music there is a moment preceding it of relative calmness, 

then a gesture I would characterize as a sudden reverse reverb to a piano stab.  From there 

until ~5:00 spikes in the flux bin count correspond to quick piano notes. 
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The period ~16:00-18:00 characterizes very chaotic behavior in the music.  The musical 

material includes a multitude of quick random note runs, and gestures that span the entire 

extent of the frequency and timbral space.  The flux bin count throughout this section is 

correspondingly high. 

 

From this measure along with a scaling by the original amplitude, a rough musical 

analysis of form might be four phrases of relative stability (roughly 0:00-1:00, 7:00-8:00, 

14:30-16:00 and 18:00-19:40) alternated by three phrases of relative complexity (roughly 

1:00-7:00, 8:00-14:30 and 16:00-18:00).  Of course a more thorough analysis of form 

would necessarily include more parameters in determining segmentation, and this is 

based on manual selection.  However, considering this analysis is based on a single 

measure I conclude that DFA should be a helpful measure in analysis of musical 

complexity. 
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Love Song #3: Space is the Place 

 

PROPOSITION II: The perceptual formation of TG’s at 

any hierarchical level is determined by a number of 

factors of cohesion and segregation, the most 

important of which are proximity and similarity; their 

effects may be described as follows: 

 

PROPOSITION II.1: Relative temporal proximity of TG’s 

at a given hierarchical level will tend to group them, 

perceptually, into a TG at the next higher level. 

 

PROPOSITION II.2: Relative similarities of TG’s at a 

given hierarchical level will tend to group them, 

perceptually, into a TG at the next higher level. 

 

PROPOSITION II.3: Conversely, relative temporal 

separation and/or differences between TG’s at a given 

hierarchical level will tend to segregate them into 

separate TG’s at the next higher level. 

 

(Tenney 103) 

 

 

James Tenney’s later work with Larry Polansky Hierarchical Temporal Gestalt 

Perception In Music: A Metric Space Model emphasizes a spatio-temporal approach 

(Tenney & Larry. Polansky 211) to music segmentation.  Taking his example as 

inspiration I next attempted to determine structure in this piece via clustering directly 

within the feature space, rather than attempt to use information theoretic and complexity 

measures. 
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While in theory Tenney’s definition of Temporal Gestalts allows for overlapping TGs—

that is, when lower-level clusters are shared by neighboring higher-level clusters, as 

during a transition point from one phrase to the next—in the practice laid out in Tenney’s 

papers this principle proved unfeasible using hierarchical clustering.  A further limitation 

of Tenney’s approach is treating each separate feature vector as a separate dimension, 

because that limits one’s ability to describe the relationships between features.  For 

instance when a trumpet player plays loudly on their instrument the resulting timbre is 

different from when a trumpet player plays softly.   In this example changes in both 

timbre and amplitude are caused by the same basic component – air pressure from the 

player. 

 

Experiment 

In performing spatio-temporal analysis I utilized a clustering algorithm that overcomes 

both of these issues—the Probabilistic Principal Component Analysis for Time-Series 

Segmentation (PPCA-TSS) technique proposed in “Modified Gath–Geva clustering for 

fuzzy segmentation of multivariate time-series” (Abonyi et al.) and implemented in 

Matlab (Janos Abonyi & Balazs Feil).  The full description of this algorithm is beyond 

the scope of this paper, but the basic procedure is that it finds the underlying variables 

that influence the observed feature vectors (via Principal Component Analysis), 

determines the optimal number of clusters needed to satisfy a certain compatibility 

criteria (similar to the concept of ergodicity described above), and arranges the size and 

position of those clusters within the feature space so that they best describe the variances 

within the underlying variables.  It then uses these clusters to segment the original data 
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into potentially overlapping segments by matching them to the geometrically closest 

cluster within the feature space.  This form of segmentation is termed “fuzzy 

segmentation” owing to its ability to overlap and interleave segments.  This is analogous 

to the sometimes “fuzzy” distinction between late morning and early afternoon, or the 

indefinite distinction between river and sea at the point at which the Mississippi River 

reaches the Caribbean.  

 

Figure 14: results of fuzzy clustering algorithm 

 

The plot above shows the results of the PPCA-TTS algorithm.  The top plot shows each 

cluster as a line whose height is the amount to which that moment in time belongs to that 

particular cluster.  It is immediately obvious that some time spans are described most by a 

single cluster, while others are aggregations of long and short time span processes.  An 

example of the former is the sequence of four clusters from ~16:00 to ~18:00.  The first, 

cluster 33 coincides with a period of pointillism in the music.  This is replaced at ~16:30 

with a much denser spectrum, with a large amount of variability throughout the frequency 
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space.  A small section at ~17:15 is musically dominated by strong 16
th

 note rhythmic 

activity (cluster 35), but this high energy section dies off by ~17:30, when a period of low 

energy calm takes over. 

 

In these examples the relationship between clusters and musical material is temporally 

clear.  This is due to the musical material’s strong cohesiveness in the feature space, 

which causes the Principle Component Analysis
*
 to strongly align those clusters along 

the time axis, which most defines the separation between clusters. 

 

  Cluster 18 (centered at ~9:00), in contrast, lasts almost the entire piece.  This cluster is 

most related to a upper mid frequency noisiness, which alternately sounds to my ear like 

it is due to something rattling, a cymbal, a shaker, or computer generated pink noise.  Its 

character is best heard at its highest point around (~8:50), and then skipping through the 

section ~5:00 - ~7:00. 

 

It is important to note that a contiguous cluster does not correlate with a contiguous 

musical object.  Rather, it is a projection of an auditory stream over that time.  Cluster 32, 

for instance, (~15:30) is strongly defined by the “Strongest Beat” feature.  This cluster 

                                                

*
 “If a multivariate dataset is visualized as a set of coordinates in a high-dimensional data 

space (1 axis per variable), PCA supplies the user with a lower-dimensional picture, a 

"shadow" of this object when viewed from its (in some sense) most informative 

viewpoint.” - http://en.wikipedia.org/wiki/Principal_components_analysis 
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most groups musical material by its rhythmic characteristics, so even though the pitch of 

the material is changing and both piano and accordion contribute this time span gets 

grouped together.  For Cluster 18 this means music material is grouped by the presence of 

that mid-range noisiness, which may be due to a cymbal, electronic synthesis, air from 

the accordion, or any multitude of acoustic sources. 

 

 

Figure 15: Fuzzy Clusters over time. 

 

The plot above (Figure 15) shows the results of the PPCA-TTS analysis as a sequence of 

clusters, and their distribution in time.  Sections of time that show increased overlap can 

be characterized as being less episodic – they consist of a mixture of clusters that slowly 

transition between each other.  The time span ~1:30-~7:00 exhibits this behavior.  

Sections of time that show little overlap are more episodic in nature – for instance the 

time span ~10:00-~13:00.   
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Finally, weighing the data to the calculated clusters results in a fine-grained fuzzy 

segmentation of the time series. 

 

Figure 16: Fuzzy Segmentation of time series from Clusters 

 

In this figure each second of the piece is represented by a block.  The color of each block 

corresponds to the cluster (or clusters) to which a segment belongs (within a blocks’ local 

neighborhood—the colors repeat over the course of the piece).  Any white part of a block 

corresponds to variance of the feature data that is not explained by the clustering model.  

This plot is a horizontal projection of the same data in Figure 15.  Similarly to the 

Multiscale entropy analysis, the fuzzy segmentation of the time series reveals blocks of 

statistically similar time spans.  This analysis, however, segments the data at musically 

significant locations.   
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In examining the piece from directly after the fade in (?) one finds that Cluster 2 begins at 

0:24 with a muted piano note
*
.  The two blocks of blue (Cluster 1) at 0:29 and 0:34 are 

due to moments where the original data again matches Cluster 1 more than Cluster 2.  

Since the center of Cluster 1 in the feature space was centered in low values in all 

features (because the audio signal was silence or very quiet) these two blocks correspond 

to moments of slightly less amplitude than the green (Cluster 2) blocks around them. 

 

Notice that from 0:35-1:00 this algorithm does not create segmentation points at the 

muted piano strikes.  Intuitively these onsets do not signify a new phrase each time they 

happen.  In this musical analysis, onsets only trigger phrase boundaries if  the material 

before and after are sufficiently different.  This means that the click at 1:03, though 

timbrally distant from the muted piano notes, appears as a member of Cluster 3(red), but 

1:04-1:08 remain members of Cluster 2 (green).  Cluster 3 is characterized by a high 

frequency, noise, sleighbell-like sound, and the click at 1:03 is timbrally closer to this 

musical material.  Although sounding on the same piano string as the muted piano notes, 

the onset at 1:12 appears as a member of Cluster 4, because of the ringing harmonics.  

And the onset at 1:21 better matches the dark muted piano notes in Cluster 2, so it is 

marked as such.   

The benefit of fuzzy segmentation is that textures need not be assumed to be sequential 

and exclusive.  Intuitively, this matches the listener’s real-time experience of 

                                                

*
 Refer to the full size fuzzy segmentation figure in the supplementary material. 
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improvisation; one cannot be sure if the hint of a transition will become a transition to a 

new section until after it has happened.   

 

To complete the hierarchical analysis of this piece I used the positions of each cluster in 

the feature space and, with an added weighing for time, created a dendrogram that groups 

these clusters in terms of their similarity and proximity in time. 

 

Figure 17: Dendrogram showing hierarchical grouping of clusters 

 

In this diagram (Figure 17) the height of each U shaped stem is equal to the time distance 

(in seconds) and the distance in the feature space (normalized) between the centers of the 

two clusters it connects.  The clusters are laid out along the horizontal axis for ideal 

representation of the tree plot instead of in temporal order.  As you can see from the plot 

the first major hierarchical division is between the segments 1-25 (roughly ~0:00-12:00) 

and 26-40 (roughly ~12:00 to ~19:40). 
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Figure 18: Fuzzy Segmentation at four hierarchical levels 

 

The figure above (Figure 18) shows the results of fuzzy segmentation using different 

hierarchical levels of clustering.  The relative heights at which these hierarchical levels 

were generated is noted as dashed lines in Figure 16.  The first graph shows the piece 

split into roughly three segments, with the transition between the first and second 

segments (roughly ~3:00-7:00) to be significantly more gradual and “fuzzy” than the 

transition between the second and third sections (roughly ~12:30).  At the second 

hierarchical level sampled (Clusters: 5) one can note that this level adds a separate 

section for the first transition, and splits the last section into two parts (roughly ~12:30-

19:40). 

 

A full analysis of these hierarchical relationships and their relation to alternate methods 

of analyzing this piece is beyond the scope of this thesis.  The initial results from this 

algorithm prove very promising for future research, but modifications to the procedure 
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are required for any qualitative statement of musical form for the entire piece.  These 

results are from a single run of the algorithm with arbitrarily selected parameters.  A 

more rigorous approach would be to apply the algorithm with multiple initial cluster sizes 

and tolerance matches for clustering.  This method might further be improved by adding 

pattern matching capabilities and groupings for temporally distant clusters to determine 

nonlinear structural relationships. 
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Conclusion 

 

In this paper I proposed three algorithms, each of which approached a specific domain of 

concern in Tenney’s theory of musical organization.   

 

The first, Multiscale Entropy, provided inconclusive results.  Though it showed some 

correlation with structural changes in the music these correlations were inconsistent and 

provided no specific rubric for which to apply the results to musical organization. 

 

The second, Detrended Fluctuation Analysis, did provide an analytically useful measure 

of the relative complexity of different sections.  I found that the fluctuation bin counts 

that resulted from this analysis correlated well with what could be roughly described in 

musical terms as stability or complexity.  Further work is required to determine the 

relationship between this measure and the number of hierarchical levels required to 

cluster a given section of music.  Nevertheless, from these results I am confident that 

measures of time series complexity provides a musically significant descriptor. 

 

The third and final algorithm, Probabilistic Principal Component Analysis for Time-

Series Segmentation, provided the most significant results with regards to Tenney’s 

theories of hierarchical gestalt grouping.  The results show that it is possible to 

algorithmically group clusters of similar musical material together with musically 

significant results.  This initial experiment only applied this procedure to one level of the 
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musical structure, and further research is required for fully quantifying the correlations 

between the experimental results and the musical material. 

 

These three “Love Songs” do not conclusively reach the goal of applying Tenney’s 

theories of Temporal Gestalt formation to computational practice, but rather provide a 

basis for further research.  I would argue that the results of the second two experiments 

provide evidence that computational models of musical organization can provide 

musically meaningful results.   
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Appendix: Full Size Figures 

Figure 1: plot Feature vectors over time 
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Figure 6: Entropy clustering of time series. 
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Figure 13: Results of Detrended Fluctuation Analysis.  The first graph is a plot of 

the Alpha value over time, the second graph is of the original Amplitude feature 

over time, and the last graph is a plot of the aggregate fluctuation bin counts. 
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Figure 14: results of fuzzy clustering algorithm 
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Figure 11: Fuzzy Segmentation of time series from Clusters 



 47 

Figure 12: Dendrogram showing hierarchical grouping of clusters 
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Figure 13: Fuzzy Segmentation at four hierarchical levels 
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